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Abstract 
An integrative computational, in silico, model of C1 metabolism is developed from molecular 
pathway systems identified from a recent, comprehensive systematic bioinformatics review of C1 
metabolism. C1 metabolism is essential for all organisms to provide one-carbon units for 
methylation and other types of modifications, as well as for nucleic acid, amino acid, and other 
biomolecule syntheses. C1 metabolism consists of three important molecular pathway systems: 1) 
methionine biosynthesis, 2) the methylation cycle, and 3) formaldehyde detoxification. Each of the 
three molecular pathway systems are individually modeled using the CytoSolve® Collaboratory™, 
a proven and scalable computational systems biology platform for in silico modeling of complex 
molecular pathway systems. The individual models predict the temporal behavior of 
formaldehyde, formate, sarcosine, glutathione (GSH), and many other key biomolecules involved 
in C1 metabolism, which may be hard to measure experimentally. The individual models are then 
coupled and integrated dynamically using CytoSolve to produce, to the authors’ knowledge, the 
first comprehensive computational model of C1 metabolism. In silico modeling of the individual 
and integrated C1 metabolism models enable the identification of the most sensitive parameters 
involved in the detoxification of formaldehyde. This integrative model of C1 metabolism, given its 
systems-based nature, can likely serve as a platform for: 1) generalized research and study of C1 
metabolism, 2) hypothesis generation that motivates focused and specific in vitro and in vivo 
testing in perhaps a more efficient manner, 3) expanding a systems biology understanding of plant 
bio-molecular systems by integrating other known molecular pathway systems associated with C1 
metabolism, and 4) exploring and testing the potential effects of exogenous inputs on the C1 
metabolism system. 
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Figure 1: CytoSolve provides a framework for integrating systems of systems of molecular pathway models 
[2, 31].  
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1. Introduction  
C1 metabolism is one of the most important biological processes in living systems responsible for providing 

one-carbon units for proteins, nucleic acids, methylated compounds, and other biomolecules. The C1 
metabolism system is mostly found in plants, bacteria, fungi, and mammals [3, 4]. A wide variety of important 
biomolecules are synthesized in C1 metabolism such as methionine, formylmethionine-tRNA, pantothenate, 
thymidylate, adenosine, and serine. More importantly, the C1 metabolism process provides the one-carbon units 
essential for DNA methylation, which controls plant growth and development, with a particular involvement in 
regulation of gene expression and DNA replication [5]. 

This research presents, to the authors’ knowledge, the first computational, in silico, model of C1 metabolism. 
The significance of this model, given its systems-based nature, is that it can likely serve as a platform for: 1) 
generalized research and study of C1 metabolism, 2) hypothesis generation that directs more focused and 
specific in vitro and in vivo testing, in a more efficient manner, 3) expanding a systems biology understanding of 
plant bio-molecular systems by integrating other known molecular pathway systems associated with C1 
metabolism, and 4) exploring and testing the potential effects of exogenous inputs on the C1 metabolism system.  

This model is based on an earlier systematic review of literature [1] that resulted in the identification of three 
critical molecular pathway systems of C1 metabolism: 1) methionine biosynthesis, 2) the activated methyl cycle, 
and 3) formaldehyde detoxification. Two major insights emerged from this earlier systematic review. The first 
major insight being that while C1 metabolism normally proceeds from serine to methionine where a carbon 
group is donated to a biomolecule in a methylation reaction, in photosynthetic tissues, however, C1 metabolism 
appears to proceed in reverse, synthesizing serine and oxidizing formate. The second major insight is that 
formaldehyde detoxification pathway can be blocked by a modification to s-formylglutathione hydrolase, which 
may cause the accumulation of formaldehyde if there is no alternative detoxification path. This earlier work 
provides the foundation for enabling the development of a predictive and integrative computational model, in 
silico model, of C1 metabolism based on the extant literature.  
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In this paper, the CytoSolve® Collaboratory™, a proven and scalable computational systems biology 
approach [2], is employed to convert the diagrammatic representations of the three molecular pathway systems 
of C1 metabolism, identified from the earlier systematic review [1], into three individual molecular pathway 
models. The three molecular pathway models are then coupled dynamically using CytoSolve to produce an 
integrative computational model of C1 metabolism.  

The CytoSolve platform performs such integration by abstracting complex cellular functions as a plurality of 
molecular pathways, each of which can be treated as individual molecular pathway models, as shown in Figure 1, 
spanning multiple spatial and temporal scales, across compartments, cell types and biological domains [2, 31]. 
This approach allows for an inherent scalability to build models of complex biological phenomena, not afforded 
by other known methods, since CytoSolve obviates the need to create one large monolithic model [31], which 
can neither be modularly scaled nor maintained, given the dynamic nature of biological research. 

The resulting integrative model of C1 metabolism provides an in silico method to gain systems-level 
understanding of complex cellular functions not possible through conventional in vitro and in vivo approaches. 
The C1 metabolism modeling, for example, predicts the temporal behavior of formaldehyde, formate, sarcosine, 
glutathione (GSH), as well as many other key biomolecules involved in C1 metabolism, which may be hard to 
measure experimentally.  

1.1 C1 Metabolism 
C1 metabolism is essential for all organisms to provide one-carbon units for methylation and other types of 

modifications, as well as for nucleic acid, amino acid, and other biomolecule syntheses. In particular, C1 
metabolism process provides the one-carbon units essential for DNA methylation, which controls plant growth 
and development, with a particular involvement in regulation of gene expression and DNA replication [5]. 

DNA methylation in plants, similar to that in animals, affects the ability of specific proteins to bind to the 
DNA and chromatin based transcription complex formation, and also related to histone modifications. 
Methylation in plants is species-, tissue-, organelle- and age-specific. In plants, DNA is highly methylated; 
containing 5-methylcytosine (m5C) and N 6-methyladenine (m6A) [5]. 

C1 metabolism in plants, however, differs in fundamental ways from that in bacteria, fungi, and mammals. In 
plants, one carbon transfer is very critical for plant specific metabolic pathways such as photorespiration, 
mitochondrial formate metabolism, glyoxylate metabolism, and the methylation cycle.  

Perturbations to C1 metabolism, therefore, may likely affect the control mechanisms of DNA methylation, 
which itself is modulated by phytohormones and changes on seed germination, flowering and under the 
influence of various pathogens (viral, bacterial, fungal). At the enzymatic level, the common enzymes that plants 
share with other organisms have been shown to have different roles in plants. Formaldehyde dehydrogenase and 
S-formylglutathione hydrolase, for example, are known to metabolize endogenous formaldehyde and not 
exogenous formaldehyde from the environment [4]. 

C1 metabolism is a complex system of molecular pathway systems. The three major molecular pathway 
systems of C1 metabolism, aforementioned, are summarized from the previous systematic literature review to 
provide the reader a background to appreciate the in silico modeling efforts herein. 

1.2 Methionine Biosynthesis 
One of the three systems of C1 metabolism is methionine biosynthesis. Methionine biosynthesis is comprised 

of set of reactions that are folate-dependent as shown in Figure 2 [1]. The starting point for methionine synthesis 
is the addition of either serine [6] or the formate molecule [7] to tetrahydrofolate (THF), followed by several 
interconversions that lead to methionine biosynthesis [8]. Formate can also get oxidized to carbon dioxide (CO2) 
or dimerize to yield glyoxylate [9]. The last step in this set of molecular pathways is the synthesis of methionine. 
Reaction between homocysteine and a THF derivative catalyzed by methionine synthase leads to the formation 
of methionine in either the cytosol or chloroplast [10]. 
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The major vehicles of one carbon unit transfer are various complexes of THF present mostly in cytosol 

[11-13], as well as the mitochondria and chloroplast [14]. The synthesis of THF spans the chloroplast, cytosol, 
and mitochondrion. The precursor of THF, dihydropterin, is synthesized in cytosol whereas p-aminobenzoic 
acid is synthesized in chloroplast. They are translocated into the mitrochondrion for completion of THF 
synthesis [15, 16]. 

1.3 Activated Methyl Cycle 
Another important system of C1 metabolism is the activated methyl cycle, as shown in Figure 3. Of the total 

methionine synthesized from the methionine biosynthesis pathway, 20% is utilized for protein synthesis [17]. 
The remaining methionine may be the used in the activated methyl cycle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 3. Activated Methyl Cycle. A one-carbon molecule is passed from methionine to a methyl group 
acceptor catalyzed by methyltransferase enzyme. Abbreviations: S-adenosylmethionine (SAM); 
S-methylmethionine (SMM); S-Adenosylhomocysteine (SAH) [1]. 

 

 

Figure 2. Methionine Biosynthesis. Interconversion of folate derivatives (in blue) results in methionine biosynthesis. 
Abbreviations: formylmethionine tRNA (FMet-tRNA); formylglycinamide ribonucleotide (FGAR); 
formamidoimidazolecarboxamide ribonucleotide (FAICAR); dihydrofolate (DHF) [1]. 
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Figure 4. Formaldehyde Detoxification. Formaldehyde is detoxified into formate through a series of intermediaries including: 
S-hydroxymethylglutathione (HM-GSH), formylglutathione (Formyl-GSH) [1].  

 

Methionine in the activated methyl cyle is converted to S-adenosylmethionine (SAM) in the cytosol [10, 
18-20] and can be translocated to chloroplast for methylation [10]. Methyltransferase enzymes bind to SAM, 
which binds to enzymes [21] to form a complex. This SAM-bound enzymes subsequently transfers the methyl 
group to methylate DNA, RNA, proteins, and other biomolecules to complete the methylation process. Loss of 
methyl group from SAM yields S-adenosylhomo-cysteine which dissociates into adenosine and homocysteine 
[22]. Homocysteine is then converted back to methionine [22] and recycled.  

1.4 Formaldehyde Detoxification 
Within C1 metabolism, formaldehyde detoxification as shown in Figure 4, is a critical system for modulating 

formaldehyde levels. Formaldehyde is a toxic compound produced during plant C1 metabolism. The 
detoxification of formaldehyde therefore is essential to normal cellular function in plants. 

The main sources of formaldehyde in plants are 5, 10-methylene-THF, methanol, and sarcosine [23, 24]. The 
detoxification of formaldehyde results in either formate or a THF derivative [4]. Formate can either be further 
oxidized to CO2 [25] or utilized as a carbon source in C1 metabolism. 

In this process, formaldehyde may bind to either to glutathione (to form hydroxylmethylglutathione 
(HM-glutathione)) [26] or to a THF derivative. Conversion of HM-glutathione to formate involves its catalysis 
by formaldehyde dehydrogenase (FALDH) to formylglutathione (formyl-GSH). In the final steps, 
formylglutathione is converted to formate and glutathione which is catalyzed by s-formylglutathione hydrolase 
[27-30]. 

2. Methods 
Computational systems biology approaches can provide insights to understand complex molecular 

phenomena. In this research, the CytoSolve technology and methodology are applied to develop an integrative 
and predictive computational model of C1 metabolism. The CytoSolve technology and approach involves a 
six-step process to produce such an integrative model [31]. The steps are as follows: 

1. Conduct and archive search results of scientific literature from disparate data sources including 
PubMed, Google Scholar, and multiple online databases;  

2. Identify molecular pathway diagrams from the extant literature, while annotating, archiving, and 
managing the sourced literature for subsequent review and access;  

3. Review the identified molecular pathway diagrams to construct a cogent systems architecture that 
provides a blueprint for future in silico modeling the of the molecular system of interest; 



S. KOTHANDARAM, P. DEONIKAR, M. MOHAN, V. VENUGOPAL, V.A.S. AYYADURAI 

 
6 

 
Figure 5: The CytoSolve software architecture framework for integrating systems of systems of molecular 
pathway models [2].  

 

4. Identify critical modelling parameters such as rate constants and initial conditions, to enable the 
conversion of the diagrammatic molecular pathway representations to predictive mathematical models; 

5. Create and simulate component (individual) molecular pathway models; and,  

6. Integrate and couple the component models to create a dynamic, scalable and predictive model of the 
biological phenomena of interest.  

In this effort, since Steps (1-2) were completed in the earlier work [1], the in silico modeling process of this 
research begins with Step 3.  

2.1. CytoSolve Background 
CytoSolve, developed in earlier work by Ayyadurai and Dewey (2011) [2], provides a scalable computational 

systems biology platform for the dynamic integration of complex and large-scale molecular pathway models [2, 
31, 32]. CytoSolve was selected for use in this research since, it allows for complex and scalable integration of 
multiple molecular pathway models. 

CytoSolve aggregates existing peer-reviewed scientific literature and mines this literature to extract 
molecular pathways of biological processes. Mathematical models derived from these pathways are integrated to 
create a validated and integrative model. This method provides a computational architecture, as shown in Figure 
5, for coupling individual molecular pathway models dynamically without the need to create a monolithic 
model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This approach provides a scalable methodology for integration of systems of systems of molecular pathway 

models. Other computational approaches are not scalable as they have not considered the intractability that 
emerges from maintaining a single large monolithic model, wherein each model, within a system of molecular 
pathway model may require constant updates and changes, given the dynamic nature of biological research [31].  

2.2. Systems Architecture of C1 Metabolism 
In silico modeling benefits greatly through a high level architecture, which provides a blueprint on how the 
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elemental pathway systems integrate as well as an understanding of how such systems may interact with related 
systems. This effort results in the development of a systems architecture map. This systems architecture map 
provides a cogent approach not only to produce an integrative model, but also to appreciate how other related 
systems, in future research, can be integrated to expand more complex understanding of the phenomena of 
interest. 

2.3 In Silico Modeling of Individual Molecular Pathway Systems 
The CytoSolve platform enables the development of three in silico molecular pathway models: 1) methionine 

biosynthesis, 2) activated methyl cycle, and 3) formaldehyde detoxification. For each individual pathway, 
relevant literature is identified, reviewed and prioritized. Key reactions in the individual pathways are identified 
from the relevant literature along with appropriate kinetic information, as well as the biomolecular species and 
their concentration information.  

In the Supplementary Materials, are provided the sources of the kinetic information used in deriving the 
individual molecular pathway models. Table S1, Table S2, and Table S3 of the Supplementary Material contain 
the kinetic information for methionine biosynthesis, activated methyl cycle, and formaldehyde detoxification 
models, respectively. The Supplementary Materials also provides the literature references from which the 
kinetics are obtained for developing the in silico models. 

2.4 Integration of Molecular Pathway Systems to Produce a Dynamic Integrative Model 
The three validated molecular pathway models of methionine biosynthesis, activated methyl cycle and 

formaldehyde detoxification are integrated in the CytoSolve platform to create an integrative and comprehensive 
in silico model of C1 metabolism. This integration is modular and dynamic, meaning the individual models 
remain in their native formats, and intelligent computational engine afforded by CytoSolve provides a 
mechanism to dynamically integrate the individual models, based on identification of common biomolecular 
species across a plurality of a system of models. For example, in one case, the two molecular species: 
homocysteine and methionine are common species across the two molecular pathway systems of methionine 
biosynthesis and active methyl cycle models. In another example, 5,10-methylene THF and formate are the 
common molecular species across the molecular pathway systems of methionine biosynthesis and formaldehyde 
detoxification pathways. 

2.5. Simulation and Verification  

The integrative model resulting from the coupling of the three molecular pathway systems of C1 metabolism 
can be used for executing simulations through CytoSolve, which performs mass balance and simultaneously 
couples and solves the systems of systems of differential equations to estimate the rate curves for each 
biomolecular species within the C1 metabolism system to estimate the concentration profiles of biomolecules in 
C1 metabolism. All simulations were executed for a simulation time period of 800,000 seconds (~9 days). These 
simulations provide the insights for conducting in silico modeling and testing of biological phenomena to 
support in vitro and in vivo research. 

3. Results 
There are six sets of results, which emerge from the research herein. The first set of results, in section 3.1, is a 

high-level systems architecture of C1 metabolism. The next three sets of results are the simulation output from 
executing each of the individual in silico models of methionine biosynthesis, active methyl cycle and 
formaldehyde detoxification, in sections 3.2, 3.3 and 3.4, respectively. The fifth set of results is the simulation 
output from the integrative model of C1 metabolism, which offers insights based on the coupling of the three 
models. Finally, the sixth set of results is the sensitivity analysis to provide a detailed understanding of which 
parameters are critical in the modeling of C1 metabolism.  

3.1. Systems Architecture of C1 Metabolism 
The systems architecture map of C1 metabolism is shown in Figure 6. This figure is the schematic illustration 

of how the three major molecular systems of methionine biosynthesis, activated methyl cycle and formaldehyde 
detoxification illustrated in Figures 2, 3 and 4, respectively, interconnect and interface with one another.  
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The schematic illustration in Figure 6 shows that each molecular pathway system of C1 metabolism interacts 

with the other two. Methionine biosynthesis, shown in Figure 2, communicates with formaldehyde 
detoxification, shown in Figure 4, via the common molecular specie of THF and 5, 10-methylene-THF. 
Methionine biosynthesis communicates with activated methyl cycle, shown in Figure 3, via the common 
molecular specie of methionine and homocysteine. The activated methyl cycle communicates with 
formaldehyde detoxification via the common molecular species of sarcosine.  

In addition to the core elements of C1 metabolism illustrated in Figure 6, Figure 7 illustrates, based on the 
current literature review, other molecular pathway systems that may likely interact with C1 metabolism. These 
systems include: THF biosynthesis, oxidative stress metabolism, catalase activity, shikimic acid metabolism, 
adenosine metabolism, glyphosate metabolism, formate biosynthesis, and serine biosynthesis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2. Methionine Biosynthesis Simulation Results 
The key biomolecular species of interest in the methionine biosynthesis model are methionine and 

formaldehyde. The methionine biosynthesis model was simulated for a simulation time period of 800,000 
seconds (~9 days). There are three important results that emerged from this simulation.  

 
 
Figure 6: Systems Architecture of C1 metabolism. This figure provides the schematic illustration of how 
methionine biosynthesis, activated methyl cycle and formaldehyde detoxification interconnect in the C1 
metabolism. 
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Figure 7: Systems Architecture for C1 metabolism interrelations with other plant pathways. 
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Figure 8B: Simulation Results of Formaldehyde Concentration from  

Methionine Biosynthesis Model. 
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Figure 8A: Simulation Results of Methionine Concentration from  

Methionine Biosynthesis Model. 
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First, the model predicts that methionine concentrations reach saturation levels of 1000 nM, near 
instantaneously relative to the simulation time of period of 800,000 seconds (~9 days), as shown in Figure 8A. 
The individual model of methionine biosynthesis only considers the reaction of formation of methionine and not 
its consumption in downstream pathways; therefore, the methionine concentrations reach a plateau and achieve a 
steady state. The steady state value 1000 nM of methionine results from the complete conversion of 
homocysteine, which is reported to have 1000 nM in physiological conditions [33]. The results indicate that all 
of the homocysteine is converted to methionine in the methionine biosynthesis model. 

The second result is concerning formaldehyde formation in the methionine biosynthesis model as shown in 
Figure 8B. Formaldehyde is produced from 5, 10-methylene THF [13, 34] in the methionine biosynthesis model. 
A steady state concentration of 0.06 nM of formaldehyde is achieved near instantaneously in methionine 
biosynthesis model. 
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Figure 8C: Simulation Results of Formate Concentration from  

Methionine Biosynthesis Model. 
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The third result is concerning formate concentrations in the methionine biosynthesis model as shown in 
Figure 8C. Formate is produced from formylglutathione (formyl-GSH) and consumed in the methionine 
biosynthesis model [28, 35]. Formate rapidly increases as it synthesized from formylglutathione and is 
converted to CO2 and water in the methionine biosynthesis model which explains the near instantaneous rise in 
formate concentrations followed by decrease in its concentrations with time. Since the formate concentrations 
are obtained from the mass balance of formate, the reduction in formate concentrations over time indicates that 
the conversion of formate to CO2 is dominant relative to the formation of formate from formylglutathione. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Activated Methyl Cycle Simulation Results 
There is one important result that emerges from this simulation as shown in Figure 9. One of the key 

reactions in activated methyl cycle is the transfer of methyl group from glycine to an acceptor such as sarcosine 
[36, 37]. Since sarcosine is an important mediator in the transfer of methyl group, observing its temporal change 
in simulation provides us critical insights into the state of the activated methyl cycle. The activated methyl cycle 
model was simulated for a simulation time period of 800,000 seconds (~9 days).  
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Figure 9: Simulation Results of Sarcosine Concentration from  

Activated Methyl Cycle Model. 
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The model predicts that the sarcosine concentrations reach steady state levels of 2000 nM near 

instantaneously. This is likely since sarcosine is synthesized and not consumed in activated methyl cycle model. 
Even though glycine is present in excess amounts [33], sarcosine concentration does not increase with time as 
there is a limited amount of methyl-group transfer from s-adenosylhomocysteine, which is required for sarcosine 
production. 

 

3.4. Formaldehyde Detoxification Simulation Results 
Formaldehyde (HCHO), which is synthesized in the methionine biosynthesis cycle, enters the formaldehyde 

detoxification model where it is eventually converted to CO2 and water (H2O) [38]. The sources of 
formaldehyde synthesis include 5, 10-methylene-THF, methanol and sarcosine [24, 39, 40]. Detoxification of 
formaldehyde is glutathione (GSH) dependent [41]. GSH-formaldehyde adduct undergoes series of 
inter-conversions catalyzed by FALDH resulting in formate [28, 42]. Formate is then converted to CO2 and 
water by formate dehydrogenase.  

The formaldehyde detoxification model was simulated for a simulation time period of 800,000 seconds (~9 
days). Two biomolecular species are of particular interest in this simulation: formaldehyde and glutathione.  

As shown in Figure 10, formaldehyde starts initially at a low, non-zero level, and decays, detoxified, within 
~120,000 seconds (~1.5 days) to zero. These results indicate that during normal plant metabolism, formaldehyde 
is efficiently cleared in the formaldehyde detoxification pathway. 
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Figure 10: Simulation Results of Formaldehyde Concentration from  

Formaldehyde Detoxification Model. 
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Figure 11 Simulation Results of Glutathione (GSH) Concentration from  

Formaldehyde Detoxification Model. 
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Since glutathione (GSH), an important antioxidant, is necessary for clearance of formaldehyde in the 
formaldehyde detoxification pathway, simulation results of glutathione’s temporal dynamics are generated. The 
simulation results, in Figure 11, indicate that during normal plant metabolism, glutathione levels are stable and 
static and maintain a steady state level of 5 mM. 
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Figure 12: Simulation Results of Formaldehyde Concentration from  

Integrative C1 Metabolism Model. 
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3.5. C1 Metabolism Model Simulation Results 
The individual models representing methionine biosynthesis, activated methyl cycle and formaldehyde 

detoxification are coupled using CytoSolve to produce an integrative model of C1 metabolism. The earlier 
results in sections 3.2, 3.3 and 3.4 are based on simulations of individual models. The results in this section are 
from simulations executed on the integrative C1 metabolism model. In the integrated model, the 
interconnections between individual models can provide insights into how the biomolecular species in one 
individual model affect the biomolecular species in the other individual model. As before, the simulation time 
period is maintained at 800,000 seconds (~9 days).  

There are three important results that emerge from this integrative simulation: 1) Formaldehyde is detoxified 
completely in C1 metabolism (section 3.5.1), 2) Sarcosine is completely depleted in C1 metabolism (section 
3.5.2), and 3) Glutathione is maintained at steady state levels in C1 metabolism (section 3.5.3). 

 
3.5.1 Formaldehyde is detoxified in C1 metabolism 

First result is, as shown in Figure 12, formaldehyde concentration is completely eliminated during C1 
metabolism. This result is consistent with the results obtained for the individual formaldehyde detoxification 
model in Figure 10. The integrative model of C1 metabolism, unlike the individual model of formaldehyde 
detoxification, reveals that the initial quantity of formaldehyde is higher. This variation is likely due to the fact 
that there are more sources of formaldehyde synthesis in the C1 metabolism model compared to the individual 
formaldehyde detoxification model.  

One other variation is that the clearance time for formaldehyde appears to be ~200,000 seconds (~2 days) in 
the integrative model versus ~120,000 (~1.5 days) in the individual formaldehyde detoxification model. This is 
again likely due to the higher amount of initial formaldehyde present. 
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Figure 13: Simulation Results of Sarcosine Concentration from  

Integrative C1 Metabolism Model. 
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3.5.2 Sarcosine is depleted in C1 metabolism 
The second result is, as shown in Figure 13, sarcosine concentrations decrease with time and reach zero. This 

result differs from the results obtained for the individual activated methyl cycle model in Figure 9. This 
variation is likely due to the complete conversion of sarcosine in the integrative C1 metabolism model, which 
can occur since sarcosine, unlike in the individual activated methyl cycle model, is utilized for synthesis of 
formaldehyde. In the individual activated methyl cycle model, there are no reactions that force the consumption 
of sarcosine. 

 

 

 

 

 

 

 

 

 

 

 

 
3.5.3 Glutathione is maintained at steady state levels in C1 metabolism 

The third result is, as shown in Figure 14, glutathione concentrations are maintained at a steady state level of 
5,000,000 nM. This result is the same as in the individual formaldehyde detoxification model shown in Figure 
11. This consistent steady state value between individual formaldehyde detoxification model and integrative C1 
metabolism model is likely because there is minimal consumption of glutathione (GSH) in the integrative model 
of C1 metabolism as well as in the formaldehyde detoxification model. Moreover, any glutathione that is 
consumed is likely recycled back from the GSH-formaldehyde adduct, which is hydrolyzed by 
formylglutathione hydrolase [28], thus maintaining a consistent steady state level.  
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Figure 14: Simulation Results of Glutathione (GSH) Concentration from  

Integrative C1 Metabolism Model. 
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3.6 Parameter Sensitivity Analysis on C1 Metabolism Model 
The results from the in silico modeling of C1 metabolism have provided insights on key biomolecular 

species, such as formaldehyde, formate, sarcosine and glutathione. These simulation results are highly 
dependent on the integrity of the literature reviewed and in particular on the kinetic rate constants used in the 
modeling. Parameter sensitivity analysis provides a method to appreciate the relative significance of critical 
parameters. 

Given the importance of formaldehyde synthesis and clearance in C1 metabolism, parameter sensitivity 
analysis was performed on the following three critical parameters:  

1. kFTD – Rate constant for conversion of 5, 10-methylene-THF to formaldehyde  
2. VCAT – Rate of formaldehyde production from methanol  
3. kGSH-HCHO – Binding rate constant of glutathione (GSH) and formaldehyde (HCHO)  
 
Three sets of results emerge from the sensitivity analysis. First, kFTD, is varied from 1.4 to 5.6 s-1 and the 

resulting formaldehyde concentrations are simulated and observed for the integrated model of C1 metabolism in 
Figure 15. The results indicate that, formaldehyde concentrations are not sensitive to kFTD in the integrative C1 
metabolism model. 
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Figure 15: Parameter Sensitivity Analysis of kFTD in the C1 Metabolism 
Model 
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Figure 16: Formaldehyde Concentration Simulation Results for Integrated C1 
Metabolism Model. 
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Second, VCAT is varied from 22 to 100 nM/s, and the resulting formaldehyde concentrations are simulated 

and observed for the integrated model of C1 metabolism in Figure 16. The results indicate that, formaldehyde 
concentrations are not sensitive to VCAT in the integrative C1 metabolism model. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



S. KOTHANDARAM, P. DEONIKAR, M. MOHAN, V. VENUGOPAL, V.A.S. AYYADURAI  

 
17 

 
Figure 17: Formaldehyde Concentration Simulation Results for Integrated C1 
Metabolism Model. 
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Third, kGSH-HCHO is varied from 0.000864 to 0.00864 nM-1 s-1, and the resulting formaldehyde 
concentrations are simulated and observed for the integrated model of C1 metabolism in Figure 17. The results 
indicate that, as kGSH-HCHO is increased, the formaldehyde concentration is decreased over time. Therefore, 
from a parameter sensitivity standpoint, unlike kFTD and VCAT, formaldehyde concentrations are highly 
sensitive to variations in kGSH-HCHO in the integrative C1 metabolism model. Although the parameter value 
varies across one order of magnitude, formaldehyde is completely detoxified in all cases. 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion and Conclusions  
This work provides, to the authors’ knowledge, the first in silico, predictive and computational model of C1 

metabolism. A global systems architecture map was developed, from an earlier systematic review, to provide a 
high-level understanding of the interrelationships of the three molecular systems of C1 metabolism: methionine 
biosynthesis, activated methyl cycle and formaldehyde detoxification. In addition, another systems architecture map 
was also developed to provide understanding of related molecular systems that may affect and be affected by C1 
metabolism.  

The systems architecture was then used within the CytoSolve Collaboratory to integrate the three molecular systems 
of C1 metabolism to produce an integrative model. Simulations were executed on the individual models as well as the 
integrative C1 metabolism model. The individual models predict temporal behavior of key biomolecules in C1 
metabolism such as formaldehyde, formate, sarcosine and glutathione. The integrative C1 metabolism model provides 
new insights and predictions of formaldehyde, sarcosine and glutathione, and affords a vehicle for hypothesis testing 
difficult to perform in vitro and in vivo.  

The integrative model of C1 metabolism predicts that in normal plants, formaldehyde is evanescently produced and 
detoxified rapidly between ~1.5 to ~2 days. Glutathione levels are minimally affected and maintain a steady state 
5,000,000 nM. Finally, sarcosine is fully consumed during C1 metabolism.  

Parameter sensitivity analysis reveals that variations in kGSH-HCHO, the binding rate constant of glutathione (GSH) 
and formaldehyde (HCHO), affect formaldehyde concentration in normal plants. Even an order of magnitude variation 
in this parameter, however, still results in complete formaldehyde detoxification. In summary, formaldehyde is fully 
detoxified, though with some temporal variations, regardless of the values of kGSH-HCHO tested. 
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5. Future Directions 
The systems architecture map in Figure 7 provides a blueprint for further research on the integrative model of C1 

metabolism model discussed herein. Clearly, there are many other neighboring biological processes that interact with 
C1 metabolism, such as THF biosynthesis, oxidative stress metabolism, catalase activity, shikimic acid metabolism, 
adenosine metabolism, glyphosate metabolism, formate biosynthesis, and serine biosynthesis, for example.  

The in silico model of C1 metabolism, now resident in the CytoSolve Collaboratory, offers a scalable and 
transparent research platform not only to study C1 metabolism, but also to expand and explore how other molecular 
systems may affect and be affected by C1 metabolism. The authors believe that oxidative stress, for example, is one 
such important molecular system that, in the near term, should be investigated, modeled and integrated within the C1 
metabolism model. Empirical data has suggested that oxidative stress may have some significant effects on species such 
as formaldehyde and glutathione. However, such exploration is difficult through current in vivo and in vitro approaches. 
The systems architecture of C1 metabolism may, however, now provide an efficient in silico mechanism to explore the 
molecular systems integration problem of oxidative stress systems with C1 metabolism to understand the effects of 
oxidative stress on formaldehyde and glutathione levels. 

The mathematical models developed in this study are based on the known literature reviewed by the authors.  
Given scientific publishing is a dynamic process, the CytoSolve Collaboratory provides a method to incorporate any 
new, updated and missing literature to enhance the model in a transparent and collaborative manner. This means that the 
C1 metabolism model shared in this research can be constantly updated to maintain its relevancy and usefulness based 
on new information. The approach presented herein, beyond expansion and understanding of C1 metabolism, may 
likely provide a new paradigm for scientific research through systems biology approaches, where transparency and 
collaboration, accessible in a computational research framework, become a critical element of scientific inquiry.  

References 
[1] Deonikar, P. , Kothandaram, S. , Mohan, M. , Kollin, C. , Konecky, P. , Olovyanniko, R. , Zamore, Z. , Carey, B. and 

Ayyadurai, V. A.S. (2015) Discovery of Key Molecular Pathways of C1 Metabolism and Formaldehyde Detoxification 
in Maize through a Systematic Bioinformatics Literature Review. Agricultural Sciences, 6, 571-585. 
doi:10.4236/as.2015.65056. 

[2] Ayyadurai, V.A.S., Dewey, C.F. (2011) CytoSolve: A methodology for dynamic integration of multiple molecular 
pathway models. Cellular and Molecular Bioengineering, 4:28–45,. 

[3] Hanson AD, Gage DA, Shachar-hill Y. Plant one-carbon metabolism and its engineering (2000). Trends Plant Sci., 
5(5):206-13. 

[4] Hanson AD, Roje S. One-carbon metabolism in higher plants(2001). Annu Rev Plant Physiol Plant Mol Biol., 
52:119-137 

[5] Vanyushin, B. F. (2006) DNA methylation in plants: DNA methylation: basic mechanisms. Springer, Berlin, 
Heidelberg. 

[6] Mouillon JM, Aubert S, Bourguignon J, Gout E, Douce R, Rébeillé F. (1999) Glycine and serine catabolism in 
non-photosynthetic higher plant cells: their role in C1 metabolism. Plant J., 20(2):197-205. 

[7] Peacock D, Boulter D. (1970) Kinetic studies of formate dehydrogenase. Biochem J., 120 (4):763-9. 
[8] Zhang W, Tang L, Sun H, et al. (2014) C1 metabolism plays an important role during formaldehyde metabolism and 

detoxification in petunia under liquid HCHO stress. Plant PhysiolBiochem., 83: 327-36. 
[9] Janave MT, Ramaswamy NK, Nair PM. (1993) Purification and characterization of glyoxylatesynthetase from 

greening potato-tuber chloroplasts. Eur J Biochem., 214(3):889-96. 
[10] Ravanel S, Block MA, Rippert P, et al. (2004) Methionine metabolism in plants: chloroplasts are autonomous for de 

novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem., 279(21):22548-57. 
[11] Chen L, Chan SY, Cossins EA. (1997) Distribution of Folate Derivatives and Enzymes for Synthesis of 

10-Formyltetrahydrofolate in Cytosolic and Mitochondrial Fractions of Pea Leaves. Plant Physiol., 115(1):299-309. 
[12] Hanson, A.D., and Gregory, J.F. (2011) Folate biosynthesis, turnover, and transport in plants. Annu. Rev. Plant Biol., 

62, 105–125. 
[13] Rebeille´, F., Stephane, R., Jabrin, S., Douce, R., Storozhenko, S., Re, F., and Straeten, D. Van Der (2006) Folates in 

plants : biosynthesis, distribution, and enhancement. Physiol. Plant., 126, 330–342. 
[14] Appling DR. (1991) Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J., 



S. KOTHANDARAM, P. DEONIKAR, M. MOHAN, V. VENUGOPAL, V.A.S. AYYADURAI  

 
19 

5(12):2645-51. 
[15] Neuburger M, Rébeillé F, Jourdain A, Nakamura S, Douce R. (1996) Mitochondria are a major site for folate and 

thymidylate synthesis in plants. J Biol Chem., 271(16):9466-72. 
[16] Sahr T, Ravanel S, Rébeillé F. (2005) Tetrahydrofolate biosynthesis and distribution in higher plants. Biochem Soc 

Trans., 33(Pt 4):758-62. 
[17] Rebeille F, Neuburger M, Douce R. (1994) Interaction between glycine decarboxylase, serine 

hydroxymethyltransferase and tetrahydrofolatepolyglutamates in pea leaf mitochondria. Biochem J., 302 (Pt 1):223-8. 
[18] Kim, D.G., Park, T.J., Kim, J.Y., and Cho, Y.D. (1995) Purification and Characterization of 

S-adenosylmethioninesynthetase from Soybean (Glycine max) Axes. J.Biochem.Mol.Biol., 28, 100–106. 
[19] Ravanel S, Gakière B, Job D, Douce R. (1998) The specific features of methionine biosynthesis and metabolism in 

plants. Proc. Natl. Acad. Sci., 95(13):7805-12. 
[20] Ravanel S, Gambonnet B, Douce R, Rébeillé F. (2003) One-carbon metabolism in plants. Regulation of 

tetrahydrofolate synthesis during germination and seedling development. Plant Physiol., 131(3):1431-9. 
[21] James, F., Nolte, K.D., and Hanson, A.D. (1995) Purification and Properties of S -Adenosyl- L -methionine : L - 

Methionine S -Methyltransferase from Wollastoniabiflora Leaves. J. Biol. Chem., 270: 22344–22350. 
[22] Bradbury, L.M.T., Ziemak, M.J., El Badawi-Sidhu, M., Fiehn, O., and Hanson, A.D. (2014). Plant-driven repurposing 

of the ancient S-adenosylmethionine repair enzyme homocysteine S-methyltransferase. Biochem. J. 463, 279–286. 
[23] Achkor H, Díaz M, Fernández MR, Biosca JA, Parés X, Martínez MC. Enhanced formaldehyde detoxification by 

overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol. 2003; 
132(4):2248-55. 

[24] Goyer, A., Johnson, T.L., Olsen, L.J., Collakova, E., Shachar-Hill, Y., Rhodes, D., and Hanson, A.D. (2004) 
Characterization and metabolic function of a peroxisomalsarcosine and pipecolate oxidase from Arabidopsis. J. Biol. 
Chem., 279, 16947–16953. 

[25] Li R, Moore M, King J. (2003) Investigating the regulation of one-carbon metabolism in Arabidopsis thaliana. Plant 
Cell Physiol., 44(3):233-41. 

[26] Vivancos, P.D., Driscoll, S.P., Bulman, C., Ying, L., Emami, K., Treumann, A., Mauve, C., Noctor, G., and Foyer, 
C.H. (2011) Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid 
metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and 
photorespiration. Plant Physiol., 157, 256–268. 

[27] Dı́az, M., Achkor, H., Titarenko, E., and Martı́nez, M.C. (2003) The gene encoding glutathione-dependent 
formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS 
Lett., 543, 136–139. 

[28] Kordic, S., Cummins, I., and Edwards, R. (2002) Cloning and characterization of an S-formylglutathione hydrolase 
from Arabidopsis thaliana. Arch. Biochem. Biophys, 399, 232–238. 

[29] Martinez, M.C., Achkor, H., Perssonz, B., Fernandez, M.R., Shafqat, J., and Farres, J. (1996) Arabidopsis 
formaldehyde dehydrogenase Molecular properties of plant class III alcohol dehydrogenase provide further insights 
into the origins , structure and function of plant class P and liver class I alcohol dehydrogenases. Eur.J.Biochem, 241, 
849–857. 

[30] Wippermann, U., Fliegmann, J., Bauw, G., Langebartels, C., Maier, K., and Sandermann, H. (1999) Maize 
glutathione-dependent formaldehyde dehydrogenase: protein sequence and catalytic properties. Planta, 208, 12–18. 

[31] Ayyadurai, V.A.S. (2011) Services-Based Systems Architecture for Modeling the Whole Cell: A Distributed 
Collaborative Engineering Systems Approach. Commun. Med. Care. Compunetics, 1: 115–168. 

[32] Koo A., Nordsletten D., Umeton R., Yankama B., Ayyadurai S., García-Cardeña G., Dewey C.F. Jr. (2013) In Silico 
Modeling of Shear-Stress-Induced Nitric Oxide Production in Endothelial Cells through Systems Biology. Biophys J., 
104(10): 2295–2306. 

[33] Nijhout, H.F., Reed, M.C., Budu, P., and Ulrich, C.M. (2004). A mathematical model of the folate cycle: new insights 
into folate homeostasis. J. Biol. Chem. 279, 55008–55016. 

[34] Zhang, Y., Sun, K., Sandoval, F.J., Santiago, K., and Roje, S. (2010) One-carbon metabolism in plants: 
characterization of a plastid serine hydroxymethyltransferase. Biochem. J. 430, 97–105. 

[35] Yokota, A., Kitaoka, S., Miura, K., & Wadano, A. (1985) Reactivity of glyoxylate with hydrogen perioxide and 
simulation of the glycolate pathway of C3 plants and Euglena. Planta, 165(1), 59–67. 

[36] Yeo, E., and Wagner, C. (1992). Purification and Properties of Pancreatic Glycine N-Methyltransferase. J. Biol. Chem. 
267, 24669–24674. 



S. KOTHANDARAM, P. DEONIKAR, M. MOHAN, V. VENUGOPAL, V.A.S. AYYADURAI 

 
20 

[37] Ogawa, H., Gomi, T., and Fujioka, M. (1993). Mammalian glycine N-methyltransferases. Comparative kinetic and 
structural properties of the enzymes from human, rat, rabbit and pig livers. Comp. Biochem. Physiol. Part B Comp. 
Biochem. 106, 601–611. 

[38] Alekseeva, A.A., Savin, S.S., and Tishkov, V.I. (2011) NAD + -dependent Formate Dehydrogenase from Plants. Acta 
Naturae, 3. 38-54. 

[39] Kallen, R. G., & Jencks, P. (1966) The Mechanism of the Condensation of Formaldehyde with Tetrahydrofolic Acid. 
The Journal of Biological Chemistry, 241(24), 5851–5863. 

[40] Havir, E. a., and McHale, N. a. (1989) Enhanced-Peroxidatic Activity in Specific Catalase Isozymes of Tobacco, 
Barley, and Maize. Plant Physiol., 91, 812–815. 

[41] Wlodek, L. (1988) The reaction of sulfhydryl groups with carbonyl compounds. Acta Biochim. Pol., 35, 307–317. 
[42] Wippermann, U., Fliegmann, J., Bauw, G., Langebartels, C., Maier, K., and Sandermann, H. (1999) Maize 

glutathione-dependent formaldehyde dehydrogenase: protein sequence and catalytic properties. Planta, 208, 12–18. 
  



S. KOTHANDARAM, P. DEONIKAR, M. MOHAN, V. VENUGOPAL, V.A.S. AYYADURAI  

 
21 

Supplementary Materials 

Table S1. List of parameters used in in silico models of methionine biosynthesis. 

Kinetic 
Parameter Description Reference 

KAICAR Michaelis Menten constant of AICAR transformylase converting AICAR to FAICAR [S1] 

kDHFR Rate constant of dihydrofolate reductase converting DHF to THF [S2] 

KDHFR Michaelis Menten constant for dihydrofolate reductase converting DHF to THF [S2] 

KFTCD Michaelis Menten constant for 5-formimino-THF cyclodeaminase converting 
5-formimino-THF to 5,10-methenyl-THF [S3] 

kFTCL Rate constant of 5-formyl THF cycloligase converting 5-formyl THF to 5,10-methenyl THF [S4] 
KFTS Michaelis Menten constant for formyl-THF synthetase converting formate to 

10-formyl-THF 
[S5] 

KGDC Michaelis Menten constant for glycine decarboxylase converting THF to 5,10-methylene 
THF 

[S6] 

kGF Second order conversion rate of glyoxylate to formate [S7] 

KGFT Michaelis Menten constant for glutamate formiminotransferase converting 
formiminoglutamate to 5-formimino-THF 

[S8] 

KGSYN Michaelis Menten constant for glyoxylate synthetase converting formate to glyoxylate [S9] 

KGTF Michaelis Menten constant for GAR transformylase converting GAR to FGAR [S10] 

KKHMT Michaelis Menten constant for ketopantoate hydroxymethyltransferase converting a-KIVA 
to THF and ketopantoate 

[S11] 

kMHF_GAR Rate constant for GAR transformylase converting 10-formyl-THF to THF [S10] 

KMTC Michaelis Menten constant for 5,10-methylene THF cyclohydrolase converting 
5,10-methenyl-THF to 10-formyl-THF 

[S12] 

KMTD Michaelis Menten constant for 5,10-methylene THF dehydrogenase converting 
5,10-methylene-THF to 5,10-methenyl-THF 

[S12] 

kMTR Rate constant for methylene THF reductase converting 5,10-methylene-THF to 
5-methyl-THF 

[S13] 

KMTR Michaelis Menten constant for methylene THF reductase converting 5,10-methylene-THF to 
5-methyl-THF 

[S13] 

KMTS Michaelis Menten constant for methionine synthase converting homocysteine to methionine [S14] 

kSHM Rate constant for serine hydroxymethyltransferase converting 5,10-methenyl-THF to 
5-formyl-THF 

[S15] 

KSHM Michaelis Menten constant for serine hydroxymethyltransferase converting 
5,10-methenyl-THF to 5-formyl-THF 

[S15] 

kSHMT Rate constant for serine hydroxymethyltransferase converting serine to glycine [S16] 

KSHMT Michaelis Menten constant for serine hydroxymethyltransferase converting serine to glycine [S16] 

kTFA Rate constant for the association of  THF and Formaldehyde to 5,10-methylene-THF [S17] 

kTFD Rate constant for the dissociation of 5,10-methylene-THF to THF and Formaldehyde [S17] 

KTS Michaelis Menten for thymidylate synthase induced synthesis of thymidylate from 
5,10-methenyl-THF 

[S18] 

VAICAR Vmax of AICAR transformylase converting AICAR to FAICAR [S1] 

VFTCD Vmax for 5-formimino-THF cyclodeaminase converting 5-formimino-THF to 
5,10-methenyl-THF 

[S3] 

VFTS Vmax for formyl-THF synthetase converting formate to 10-formyl-THF [S5] 

VGDC Vmax for glycine decarboxylase converting THF to 5,10-methylene THF [S6] 

VGFT Vmax for glutamate formiminotransferase converting formiminoglutamate to 
5-formimino-THF 

[S8] 

VGSYN Vmax for glyoxylate synthetase converting formate to glyoxylate [S9] 

VGTF Vmax for GAR transformylase converting GAR to FGAR [S10] 

VKHMT Vmax for ketopantoate hydroxymethyltransferase converting a-KIVA to THF and 
ketopantoate 

[S34] 
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Table S2. List of parameters used in in silico model of activated methyl cycle. 

Kinetic Parameter Description Reference 
KSAM Michaelis Menten constant for S-adenosyl methionine synthase converting 

methionine to SAM 
[S19] 

VSAM Vmax for S-adenosyl methionine synthase converting methionine to SAM [S19] 

VMTG Vmax for Glycine methyltransferase converting Glycine to Sarcosine [S20] 

KMTA Michaelis Menten constant for glycine methyltransferase converting SAM to SAH [S21] 

KMTG Michaelis Menten constant for glycine methyltransferase converting glycine to 
sarcosine 

[S21] 

KSAH Michaelis Menten constant for the dissociation of SAH to adenosine and 
homocysteine induced by  S-adenosyl homocysteine hydrolase 

[S22] 

VSAH Vmax for  the dissociation of SAH to adenosine and homocysteine induced by  
S-adenosyl homocysteine hydrolase 

[S22] 

kHMT Rate constant for the association of SMM and homocysteine to methionine induced 
by homocysteine methyltransferase 

[S23] 

KHMT Michaelis Menten constant for the association of SMM and homocysteine to 
methionine induced by homocysteine methyltransferase 

[S23] 

KMMT Michaelis Menten constant for  Methionine methyltransferase converting 
Methionine to SMM 

[S24] 

VMMT Vmax for methionine methyltransferase converting methionine to SMM [S24] 

VADOK Vmax for adenosine kinase converting adenosine to AMP [S25] 

KADOK Michaelis Menten constant for  adenosine kinase converting adenosine to AMP [S25] 

VADEK Vmax for adenylate kinase converting ADP to AMP and ATP [S26] 

KADEK Michaelis Menten constant for adenylate kinase converting ADP to AMP and ATP [S26] 

KSAM Michaelis Menten constant for S-adenosyl methionine synthase converting 
methionine to SAM 

[S19] 

VSAM Vmax for S-adenosyl methionine synthase converting methionine to SAM [S19] 

VMTG Vmax for Glycine methyltransferase converting Glycine to Sarcosine [S20] 

KMTA Michaelis Menten constant for glycine methyltransferase converting SAM to SAH [S21] 

KMTG Michaelis Menten constant for glycine methyltransferase converting glycine to 
sarcosine 

[S21] 

KSAH Michaelis Menten constant for the dissociation of SAH to adenosine and 
homocysteine induced by  S-adenosyl homocysteine hydrolase 

[S22] 

VSAH Vmax for  the dissociation of SAH to adenosine and homocysteine induced by  
S-adenosyl homocysteine hydrolase 

[S22] 

kHMT Rate constant for the association of SMM and homocysteine to methionine induced 
by homocysteine methyltransferase 

[S23] 

KHMT Michaelis Menten constant for the association of SMM and homocysteine to 
methionine induced by homocysteine methyltransferase 

[S23] 

KMMT Michaelis Menten constant for  Methionine methyltransferase converting 
Methionine to SMM 

[S24] 

 
  



S. KOTHANDARAM, P. DEONIKAR, M. MOHAN, V. VENUGOPAL, V.A.S. AYYADURAI  

 
23 

Table S3. List of parameters used in in silico model of formaldehyde detoxification. 

Kinetic Parameter Description Reference 
kTFD Rate constant for the dissociation of 5,10-methylene-THF to THF and Formaldehyde [S17] 

kTFA Rate constant for the association of  THF and Formaldehyde to 
5,10-methylene-THF 

[S17] 

VCAT Vmax for catalase converting methanol to formaldehyde [S27] 

KCAT Michaelis Menten constant for  catalase converting cethanol to formaldehyde [S28] 

kSOX Rate constant for sarcosine oxidase converting sarcosine to glycine and formaldehyde [S29] 

KSOX Michaelis Menten constant for  sarcosine oxidase converting sarcosine to glycine 
and formaldehyde 

[S29] 

kGSHdissF Rate constant for the dissociation of HM-GSH to GSH and formaldehyde [S30] 

kGSHbindF Rate constant for the association of GSH and formaldehyde to HM-GSH [S30] 

VFALDH Vmax for FALDH induced GSH formaldehyde adduct formation [S31] 

KFALDHN Michaelis Menten constant for FALDH converting NAD to NADH [S31] 

KFALDH Michaelis Menten constant for FALDH induced GSH formaldehyde adduct 
formation 

[S31] 

VFGH Vmax for FGH converting formyl-GSH to Formate [S32] 

KFGH Michaelis Menten constant for FGH converting formyl-GSH to Formate [S32] 

kFDH Rate constant for FDH induced conversion of formate to H2O and CO2 [S33] 

KFDH Michaelis Menten constant for  FDH induced conversion of formate to H2O and 
CO2 

[S33] 

kTFD Rate constant for the dissociation of 5,10-methylene-THF to THF and Formaldehyde [S17] 

kTFA Rate constant for the association of  THF and Formaldehyde to 
5,10-methylene-THF 

[S17] 

VCAT Vmax for catalase converting methanol to formaldehyde [S27] 

KCAT Michaelis Menten constant for  catalase converting cethanol to formaldehyde [S28] 

kSOX Rate constant for sarcosine oxidase converting sarcosine to glycine and formaldehyde [S29] 

KSOX Michaelis Menten constant for sarcosine oxidase converting sarcosine to glycine and 
formaldehyde 

[S29] 

kGSHdissF Rate constant for the dissociation of HM-GSH to GSH and formaldehyde [S30] 

kGSHbindF Rate constant for the association of GSH and formaldehyde to HM-GSH [S30] 

VFALDH Vmax for FALDH induced GSH formaldehyde adduct formation [S31] 

KFALDHN Michaelis Menten constant for FALDH converting NAD to NADH [S31] 
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